Sickle Cell Review and Health Disparities

OLIVIA WHITE, PHARMD UVA HEALTH, LYMPHOMA AND MYELOMA PHARMACIST

Disclosures

I have nothing to disclose. I will not be discussing off-label indications.

Objectives

To review the pathophysiology and long-term complications of sickle cell disease (SCD)

To discuss pharmacotherapy and literature used to mitigate complications of SCD

To identify the impact of healthcare disparities on SCD care and to propose actionable solutions to minimize these experiences

Ρ	ratnophysiology
In	herited in an autosomal recessive fashion
Ai he	n alternation in one DNA base-pair on codon 6 resulting in a modified emoglobin conformation (Hgb S)
Ce	ell sickling is driven by the recurrent polymerization of Hgb S
Re	ecurrence leads to to persistent vaso-occlusion, inflammation, and hemolysis

Disease	HgbA (%)	HgbS (%)	HgbF (%)	Clinical Course	Prevalence (%)
Sickle Cell Anemia	0	80-95%	5-15%	Severe	50-60%
Sickle-C disease	0	50-55%	<3%	Moderate	25-30%
S/β ⁰ thalassemia	0	80-90%	5-15%	Severe	1-3%
S/β⁺ thalassemia	10-25%	70-80%	<3%	Mild	5-10%
S/Other	0	50-60%	Variable	Variable	1-2%

SCD-Related Complications						
	Childhood	Childhood Adolescence Adulthood				
During Life Stages	Delayed growth	th Delayed puberty		Hemorrhagic Stroke Leg Ulcers Reproductive Complications Pulmonary HTN		
Spanning Stages	Aplastic Crisis Splenic Complications Infection		Ava Priap	scular Necrosis Chronic Pain ism Retinopathy Gallstones Nephropathy VTE		
During All of Life	Acute Pain Acute Chest Syndrome Ischemic Stroke					

Audience Response Question 1

Which of the following is not a complication commonly seen with SCD? A. Stroke

B. Priapism

C. Asplenia D. Pancreatitis

Today's Discussion Disease Review Current Management Disparities in SCD Potential Solutions

-		

Established Strategies – Polymerization						
Agent	FDA Approval Date and Indication	Mechanism of Action	Dosing	Common ADEs		
Hydroxyurea	1998: Adults, to reduce incidence of pain crises 2017: Children ≥ 2 years to reduce pain crises	-Increase in fetal hemoglobin and NO -Decrease adhesion and inflammation	Start dose at 15-20 mg/ kg/day	Neutropenia (13%), Thrombocytopenia (7%), Nausea (3%)		
Voxelotor	2019: Ages ≥ 12 to increase hemoglobin concentration	-Allosteric modification of hemoglobin with aim to stabilize the oxygenated state	1500mg daily	Diarrhea (20%), Abdominal Pain (19%), Nausea (17%), Headache (16%), Rash (14%), Fatigue (14%), Fever (12%)		

Established Strategies – Polymerization					
Agent Trials Result					
Hydroxyurea	Charache, et al. (1995)	-Rate of annual crises: 2.5 vs 4.5 (P<0.001) -Median time to crisis: 3.0 vs 1.5 months (P=0.01)			
	BABY HUG (2011)	-No differences in splenic or renal function -Pain Events: 177 vs 375 (p=0.002) -Potential decreases in ACS, hospitalizations, and transfusion needs			
	TWITCH (2016)	Non-Inferiority was demonstrated between HU and standard transfusions for primary stroke prevention			
	SWITCH (2013)	Administration of HU with phlebotomy resulted in an increased risk of serious AEs than transfusion/chelator arm.			
Voxelotor	HOPE (2021)	-Change in mean Hgb from baseline: 1.0 vs 0.0 (p<0.0001) -Improvements in hemolysis markers			

ESL	aplished :	strategies -	- vaso-occ	lusion
Agent	FDA Approval Date and Indication	Mechanism of Action	Dosing	Common ADEs
L-Glutamine	2017: Ages ≥ 5 to reduce pain crises and ACS	Increase nicotinamide adenine dinuclotide (NAD) redox potential	<30 kg: 5g BID 30-65 kg: 10g BID >65 kg: 15g BID	Constipation (21%), Nausea (19%), Headache (18%), Abdominal pain (17%), Cough (16%)
Crizanlizumab	2019: Ages ≥ 16 to reduce frequency of VOC	Binds to P-selectin	5mg/kg/dose IV weeks 0, 2, and then 4-week intervals	Nausea (18%), Arthralgia (18%), Back pain (15%), Fever (11%)

Estal	olis	hed	Strategies -	- Vaso-occ	lusion
-------	------	-----	--------------	------------	--------

Agent	Trials	Result
L-Glutamine	Niihara, et al. (2018)	-Annual pain crisis rate: 3 vs 4 (p=0.005) -Hospitalization rate: 2.0 vs 3.0 (p=0.005) -High rate of therapy discontinuation
Crizanlizumab	SUSTAIN (2017)	-Vaso-occlusive crises per year: 1.63 vs 2.98 (p=0.01) -Median time to first crisis: 4.07 vs 1.38 months (p=0.001)

Demonstrate	d Benefi	ts		
Benefit	Hydroxyurea	L-Glutamine	Voxelotor	Crizanlizumab
Pain Crisis	х	х		х
Fime to First Pain Crisis	х	х		х
Fime to Second Pain Crisis	х	х		х
Acute Chest Syndrome	х	х		
Need for Transfusions	х			
Hospitalizations	х	х		х
Hemoglobin	х		Х	
Hemolysis Labs			х	
Vortality	?			
Quality of Life				

Medication	Supplied As	Cash Price
Hydroxyurea	500 mg capsule	\$1.64/capsule \$3.28/dose for a 70kg patient \$98.40/month for 70kg patient
L-glutamine	5 g packet	\$23/packet \$46-138/day \$1380-4140/month
Voxelotor	500 mg tablet	\$138.89/tablet \$416.67/dose \$12,500/month
Crizanlizumab	100 mg/10 mL vial	\$282.86/mL \$2,828.60/10 mL \$9,900/month for 70kg patient

The F	uture is	Bright!			
Gene therapy	Gene editing	Panobinostat	Decitabine ± tetrahydrouridine ± nicotinamide	Sanguinate	IMR-687
Sevuparin	IVIG	Arginine	Imatinib	Fish Oil	Rifaximin
AG-348	Crovalimab	ALXN1820	AG-948	Fostamatinib	Inclacumab

Audience Response Question 2

Which of the following agents has been demonstrated to cure SCD? A. Allogeneic HSCT

B. Hydroxyurea

C. Voxelotor D. Crizanlizumab

Demonstrate	ed Reveti	ts		
Benefit	Hydroxyurea	L-Glutamine	Voxelotor	Crizanlizumab
Pain Crisis	Х	х		х
Time to First Pain Crisis	х	х		х
Time to Second Pain Crisis	х	х		х
Acute Chest Syndrome	х	х		
Need for Transfusions	х			
Hospitalizations	х	х		х
Hemoglobin	х		Х	
Hemolysis Labs			х	
Mortality	?			

Opportunities for SCD Disparities

-				
-				

Structural Disparities – Monetary Support							
SCD CF P-Value							
Disease Characteristics							
National Patient Population	90,000	30,000	NA				
Life Span, mean (yr)	58	46	NA				
Estimated lifetime costs per individual, \$	460,151	306,332	NA				
Annual NIH Funding							
NIH funding, per person affected, mean (SD), \$	812 (147)	2807 (175)	<0.001				
Research Output (2008-2018)							
Annual PubMed publications, mean (SD)	926 (157)	1594 (225)	< 0.001				
Annual clinical trials, mean (SD)	24 (6.3)	27 (6.9)	0.23				
New FDA drug approvals	1	4	NA				
New FDA drug indications	2	11	NA				

Impacting Patient Care Perceptions

Study	Assessment	Outcomes		
Kanter, et al. (2020) N=440	-Survey conducted to evaluate pain interference, quality of care, and self- ability to manage pain -Evaluated at 8 SCD Implementation Consorium sites	-82.6% of patients reported access to non-acute care -92.1% reported satisfaction with their usual care -Perceptions were primarily driven by pain and pain management in outpatient setting -66% reported an emergency department visit in the past year for acute pain		
Haywood, et al. (2014) N=354	-Observational cohort study of patient experiences at two academic medical centers	-Disease based discrimination was associated with a greater range of self-reported pain -Patients who experienced discrimination were associated with poorer medication adherence		

Audience Response Question 3

Which of the following actions can you take to help in minimizing health inequities for patients with SCD?

A. Ensuring the patient is up-to-date on their vaccinations

B. Assessing the patient barriers to adherence

C. Performing an in-depth medication reconciliation

D. All of the above

Sickle Cell Review and Health Disparities

OLIVIA WHITE, PHARMD UVA HEALTH, LYMPHOMA AND MYELOMA PHARMACIST

Genome Modification with OTQ923

Autologous, ex vivo CRISPR-Cas9-edited CD34+ stem cell product

Phase 1-2 clinic study assessed use in the initial three patients

Prior to collection, patients received monthly red-cell exchange transfusions for at least 2 months

Mobilization occurred with plerixafor and then the apheresis product was enriched for CD34+ cells and then electroporated with the CRISPR-CaS9_gRNA-68 complex Conditioning with myeloablative busulfan

Reported an improvement in hemoglobin and fetal hemoglobin percentage

Demonstrated a potential role for gene modification in SCD

A, et al. N Engl J Med. 2023 Aug 31:389(9)-820-832

Other Resources

CDC Public Health Webinar Series on Blood Disorders

